
Homework 1, part 2/2
Version as of Oct 2, 2024, a few typos and errors fixed

Due date for entire HW1 is Oct 20. Either paper or electronic submission is fine.

Each exercise is worth 1 point. Extra point for each reported error! – please use forum.

Total score for this part is #points/#total, so the maximum is 1 (more with extra credit)

We encourage you to use QuTiP in Python to do some of these exercises, at least to verify
your answers or just to explore the problem without having to do the math by hands.

Suggested study material:
- L. Susskind Theoretical Minimum book, Ch. 4
- Kay, Laflamme, Mosca Quantum Computing book, Ch 3.1-3.2
- Wiki is always there for you:

https://en.wikipedia.org/wiki/Two-state_quantum_system

- We encourage the use of QuTiP to do some of these exercises and gain intuitition without
excessive math workout.

https://qutip.org/qutip-tutorials/

A. Time-evolution of qubit state

Time-dependent Schrodinger’s equation. A quantum state |Ψ⟩ evolves in time according
to the Schrodinger’s equation:

∂|Ψ⟩
∂t

= − i

ℏ
Ĥ|Ψ⟩ (1)

where we are introducing the Planck constant(s) h = 2πℏ and the Hamiltonian operator
Ĥ, the quantum version of the Hamiltonian function in classical mechanics. The meaning
of this equation can be understood by considering the state vectors of the system at time
t and at a very close time t+∆t. That is,

|Ψ(t+∆t)⟩ = |Ψ(t)⟩ − i∆t

ℏ
Ĥ|Ψ(t)⟩ =

(
Î − i∆t

ℏ
Ĥ
)
|Ψ(t)⟩. (2)

Since ⟨Ψ(t +∆t)|Ψ(t +∆t)⟩ = ⟨Ψ(t)|Ψ(t)⟩ = 1, we must insist that Î − i∆t
ℏ Ĥ is unitary,

which in turn means Ĥ† = Ĥ, that is Hamiltonian is a hermitian operator (verify both
conclusions). This conclusion agrees with the fact that Ĥ in the Schrodinger’s equation
represents the system’s total energy and hence it should be an observable, and observables
must indeed be described by hermitian operators (otherwise they can’t be measured). To
solve the Schrodinger’s equation we can split the evolution time interval into many small
intervals ∆t, and recover |Ψ(t)⟩ from |Ψ(t = 0)⟩ by repeatedly applying relation (2). We
can also run the evolution backwards in time, and find out what |Ψ(t⟩) was before t = 0.
We say the evolution is reversible.
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Exercise 1: Verify the following equation for the time evolution of the mean value of a
measurement outcome of some hermitian operator L̂:

∂

∂t
⟨Ψ(t)|L̂|Ψ(t)⟩ = ⟨Ψ(t)|

(
− i

ℏ
[L̂, Ĥ]

)
|Ψ(t)⟩, (3)

where [L̂, Ĥ] = L̂Ĥ − ĤL̂ is called the commutator of operators L̂ and Ĥ. For a mean
value of a quantum observable to change, its operator must not commute with the Hamil-
tonian operator.

Time-dependence of |Ψ⟩ becomes especially simple in the basis of the eigenstates of
Ĥ. Let’s take a simple qubit example with the Hamiltonian operator written as Ĥ =
E0|E0⟩⟨E0| + E1|E1⟩⟨E1|, where E0 and E1 are eigenvalues and |E0⟩ and |E1⟩ are the
corresponding eigenvectors of Ĥ. Then we can write an arbitrary qubit state as

|Ψ(t)⟩ = α0(t)|E0⟩+ α1(t)|E1⟩.

Exercise 2: Plug the above wave function into Eq. 1 and obtain the following solution
of the Schrodinger’s equation:

|Ψ(t)⟩ = exp(−iE0t/ℏ)× α0(t = 0)|E0⟩+ exp(−iE1t/ℏ)× α1(t = 0)|E1⟩. (4)

Hint: you can simply plug the above solution into Eq. 1

Remember, the global phase is not important, so we can move the time-dependence en-
tirely to the α1-amplitude. The time dependence is given entirely by the energy difference
of the two qubit states:

|Ψ(t)⟩ = α0(t = 0)|E0⟩+ α1(t = 0) exp(−i(E1 − E0)t/ℏ)|E1⟩ (5)

Exercise 3: Show that if a qubit starts in an energy eigenstate |E0⟩ or |E1⟩, it stays in
that state, no time-evolution takes place.

Exercise 4: Set up a Bloch sphere in the basis |E0⟩, |E1⟩ and consider α0(t = 0) =
α1(t = 0) = 1/

√
2. Show the qubit state at t = 0 and mark its time-evolution.

We finally have a quantum expression that has some physical meaning. Namely, the
phase in Eq. (5) oscillates at the angular frequency (E1 −E0)/ℏ, and the period of oscil-
lations is 2πℏ/(E1 − E0) = h/(E1 − E0).
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Exercise 5: Let’s assume we have such a macroscopic qubit that the energy differ-
ence E1 − E0 is given by the nutritional value of Big Mac (590 food calories). Each
food cal. is 4200 Joules, which is the SI unit measure of energy. In the same units,
h ≈ 6 × 10−34 [Joule second]. Question: what would be the period of oscillations of the
qubit phase in this case? [just divide the two numbers] Does it make sense why Big Mac is
classical now? How small should the qubit energy difference be for the phase to oscillated
in time at a more experimentally accessible frequency?

Exercise 6: Show that a modified Hamiltonian Ĥ − ÎE0 (where E0 is the lowest
eigenvalue of Ĥ) has the same eigenvectors as Ĥ and the same time-evolution of the qubit
state.

Another way to solve the Schrodinger’s equation (for a time-independent Ĥ) is to simply
guess that:

|Ψ(t)⟩ = exp(−iĤt/ℏ)|Ψ(t = 0)⟩ (6)

Exercise 7: Check that the proposed above evolution operator indeed solves the
Schrodinger’s equation (1). Then use the matrix exponentiation trick for Ĥ = E0|E0⟩⟨E0|+
E1|E1⟩⟨E1| to verify the solution in Eq. 5

Time-independent Schrodinger’s equation. All that is left to do for solving the regular
Schrodinger’s equation is to find the eigenstates and eigenvalues of the Ĥ operator. This
leads to the so-called time-independent Schrodinger equation:

Ĥ|E⟩ = E|E⟩

B. Hamiltonian operator for qubits

Just like in classical mechanics, we can think of a quantum system’s Hamiltonian as what
rigorously defines this particular system. Every instrument comes with a manual, every
physical quantum system comes with a Hamiltonian. Curiously, the options for a legal
Hamitonian operator for a two-level system are so limited that we can just guess it. In-
deed, we know that the Hamiltonian matrix (say in the computational basis) must be

hermitian, which limits its entries to 4 independent numbers: Ĥ/ℏ =

(
a x− iy

x+ iy b

)
where a, b, x, y are all real numbers.
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Exercise 8: Show by an explicit demonstration that any Hermitian 2 × 2 matrix can
be written as a superposition of

Ĥ/ℏ = −ωI Î − ωXX̂/2− ωY Ŷ /2− ωZẐ/2, (7)

where ω0, ωX , ωY , ωZ are all real numbers and X̂, Ŷ , Ẑ are the Pauli matrices. The minus
signs is just a convention, a part of the definition of ω’s The term Î has no significance
as it simply shifts all the eigenvalues by ωI , so we don’t loose any information by setting
ωI = 0.

Note, Eq. 7 is the most general Hamiltonian for a stationary qubit (or spin). In case
of the real spin, say of an electron in a quantum dot, the frequencies ωX , ωY , ωZ are
proportional to magnetic fields along the three axis. In artificial systems, like supercon-
ducting qubits, they have nothing to do with magnetic fields. But because of the electron
spin analogy, the three coefficients are often called ”magnetic fields” or just ”fields”.

It is quite convenient that H/ℏ has units of frequency (angular frequency), which is a
relatively intuitive physical quantity. So in what follows we would always quote Ĥ/ℏ
instead of Ĥ, which would effectively eliminate ℏ from our equations, unless we go for a
deeper journey into the microscopic origins of the Hamiltonian parameters, for which we
are not ready yet.

Exercise 9: Show that eigenvalues of Ĥ in Eq. 7 are given by ±
√
ω2
X + ω2

Y + ω2
Z/2

Exercise 10: Show that eigenstates of Ĥ in Eq. 7 in the Bloch sphere are aligned
along (or against) the axis defined by (ωX , ωY , ωZ).

Hint: ωZ =
√

ω2
Z + ω2

X + ω2
Y × cos θ, ωX =

√
ω2
Z + ω2

X + ω2
Y × sin θ cosϕ, ωY = ..., apply

Ĥ to the suspect eigenvector |Ψ⟩ = cos θ/2|0⟩+ ... and use some trigonometry.

Exercise 11: Another way to guess the eigenstates of Ĥ is by applying a rotation
operator to states |0⟩ and |1⟩ to align them along the direction (ωX , ωY , ωZ). This can
be done in sequence, first rotate by θ in the Z-X plane and then add the ϕ-rotation in
the X-Y plane. Create the rotation operators in terms of ωX , ωY , ωZ , create the suspect
eigenstates by applying the rotation operators to |0⟩ and |1⟩ and check if the rotated basis
states are indeed the eigenstates.
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The outcome of the last two exercises is important: they show that the dynamics of a
qubit with the most general possible Hamiltonian is equivalent to a much simpler Hamil-
tonian of Ĥ = 1

2
ωẐ, if we change the computational basis to states along and against the

(ωX , ωY , ωZ) vector in the Bloch sphere.

C. Commutation relations of X̂, Ŷ , Ẑ

Let us now play a bit with the Eq. 3 which describes the evolution of the mean values
of the observables of our qubit. Using this equation requires us finding the commutation
relation of X̂, Ŷ , and Ẑ operators. Remember, these are just Pauli matrices. So:

[X̂, Ẑ] = X̂Ẑ − ẐX̂ =

(
0 1
1 0

)
×

(
1 0
0 −1

)
−

(
1 0
0 −1

)
×
(
0 1
1 0

)
=

(
0 −2
2 0

)
= −2iŶ

Likewise
[Ŷ , Ẑ] = 2iX̂
[Ẑ, Ẑ] = 0
...

Exercise 12: Verify all the other commutation relations involving Pauli matrices by
directly multiplying the corresponding matrices. Feel free to do it on a computer.

Everything you possibly wanted to (or did not) know about Pauli matrices is here:

https://en.wikipedia.org/wiki/Pauli_matrices

Let us take the most general possible qubit Hamiltonian given by Eq. 7 and write down
the time evolution equation for the expectation values:

⟨Ẋ⟩ = ⟨(−i/ℏ)[X̂, Ĥ]⟩ = −ωZ⟨Ŷ ⟩+ ωY ⟨Ẑ⟩
⟨Ẏ ⟩ = ⟨(−i/ℏ)[Ŷ , Ĥ]⟩ = −ωX⟨Ẑ⟩+ ωZ⟨X̂⟩
⟨Ż⟩ = ⟨(−i/ℏ)[Ẑ, Ĥ]⟩ = −ωY ⟨X̂⟩+ ωX⟨Ŷ ⟩

These three equations highlight that the reason the mean value of an observable changes
in time is that its underlying operator does not commute with the Hamiltonian operator.
Denoting the mean values of the spin operators as ⟨X̂⟩ = x, ⟨Y ⟩ = y, ⟨Z⟩ = z, we get an
equation:

˙⃗r = M̂ r⃗, M̂ =

 0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0

 (8)

The solution is quite familiar to us by now:

x(t)
y(t)
z(t)

 = exp(M̂t)

x(t = 0)
y(t = 0)
z(t = 0)


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Exercise 13: Let’s consider a simplified case of Ĥ/ℏ = −ωẐ/2. Describe the evolution
of z(t) which follows from Eq. 8.

Exercise 14: Continuing from the previous exercise, note that the Eq. 8 for the evo-
lution of x(t) and y(t) is exactly the same as the equation of motion for the harmonic
oscillator. Show the time-evolution in the x-y plane (equatorial plane of the Bloch sphere).

Exercise 15: Set ωX = ωY = ωZ = 1 and solve the equation of motion for x, y, z
numerically using any solver you have available. You basically need to exponentiate the
matrix M̂ . Demonstrate that the solution is a rotation of the initial (x, y, z)-vector around
the vector oriented along (1, 1, 1).

Note, the evolution equation for the mean values x, y, z of the spin projection opera-
tors in quantum mechanics are reminiscent of the motion of a classical gyroscope. Check
out this video and try to identify the analogy

https://www.youtube.com/watch?v=8H98BgRzpOM

This spin-gyroscope analogy is very helpful in guessing the solutions of the Schrodinger’s
equation for the evolution of state vector in the Bloch sphere. And it helps to understand
why we call this thing ”spin”!

D. Changing reference frames: ”rotating” frame vs. ”lab” frame

Check out this brief note about the frame change in quantum mechanics:

https://en.wikipedia.org/wiki/Unitary_transformation_(quantum_mechanics)

Exercise 16: Consider a qubit with a Hamiltonian Ĥ/ℏ = −ωẐ/2. Consider that at
time t = 0 the qubit was initialized in state |Ψ0⟩ = |0⟩/

√
2+ |1⟩/

√
2. Show that the time

evolution of the qubit state would be

|Ψ(t)⟩ = |0⟩/
√
2 + exp(−iωt)|1⟩/

√
2.

This is initially |+⟩ state vector rotating in the equatorial plane of the Bloch sphere at
an angular rate ω.

Exercise 17: Apply a unitary transformation Û = exp(−iωẐ/2) to the time-dependent
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state of the qubit in the previous exercise. What new Hamiltonian describes the time-
evolution of this new state?

Here is the general idea about changing frames. Suppose that in the ”lab frame” (no frame
changes yet), we have a system (think 1 qubit) which is described by a Schrodinger’s equa-
tion |Ψ̇⟩ = (−i/ℏ)Ĥ|Ψ(t)⟩. Let us take any unitary transformation Û and define a new
state |Ψ′⟩ = Û |Ψ⟩. What is the Schrodinger equation for |Ψ′⟩? We use relations U †U = I
and U−1 = U † and with a bit of matrix multiplication, we get the following equation:
|Ψ̇′⟩ = (−i/ℏ)H ′|Ψ′⟩, where the new Hamiltonian is H ′ = UHU † + iℏU̇U †. It’s ok to use
time-dependent U as well, otherwise U̇ = 0. With a clever choice of U , the matrix H ′ can
be much simpler than H, which makes the qubit dynamics more transparent. Let’s keep
this trick in mind.

Exercise 18: Consider a qubit with a Hamiltonian H/ℏ = −ω0Ẑ/2. Consider a frame
change defined by the unitary exp(−iωtẐ/2). What is the Hamiltonian in this new frame?
How would you choose ω to make the evolution as simple as possible?

E. Implementing quantum gates: evolution after a fast switch

Time to discuss how one might implement the rotations of the qubit state in the Bloch
sphere. Such rotations are often called gates, as they change a given qubit state into a
new one according to some fixed rule (the rotation). The first common approach is to
utilize abrupt switching of the fields X̂, Ŷ , Ẑ. For any time-independent Hamiltonian
Ĥ, the state evolution from times t1 to time t2 is given by |Ψ(t2)⟩ = Û(t1, t2)|Ψ(t1)⟩,
where Û = exp(−iĤ(t2 − t1)/ℏ). So, for the most general qubit Hamiltonian, we get
Û(t1, t2) = exp(−i(t2 − t1)(ωXX̂ + ωY Ŷ + ωZẐ)). Switching on or off one of the values
ωX , ωY , ωZ modifies the evolution operator. So to find the quantum state after a num-
ber of such ”switches” we just apply the corresponding evolution operators operators to
account for the evolution at every interval of time in between the switches.

Exercise 19: Consider a qubit with a Hamiltonian H = 0 prepared in state |0⟩. Let’s
say an experimentalist can turn on and off the fields ωX , ωY , ωZ in the Hamiltonian (7)
abruptly at any time. So, say at time t = 0 we abruptly turn on the Y -field, which means
the Hamiltonian becomes H/ℏ = −ωŶ /2. The qubit at this moment is still in state |0⟩,
which is no longer an eigenstate of the new Hamiltonian. So some time-evolution will take
place. Show this evolution on the Bloch sphere. At what time should the experimentalist
set ω = 0 to arrive at states |1⟩, |+⟩, |−⟩?
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Exercise 20: Let’s do the same exercise as before, but with the following change:
at time t = 0 we abruptly turn on the X-field, which means the Hamiltonian becomes
H/ℏ = −ωX̂/2. Show this evolution on the Bloch sphere. At what time should the
experimentalist set = 0 to obtain states |1⟩, |+ i⟩, | − i⟩?

Exercise 21: Let’s do a slightly fancier manipulation. We take a hamiltonian Ĥ/ℏ =
−ωẐ/2 and start again in state |0⟩. At time t = 0 we turn on an X-field, which makes
the new Hamiltonian Ĥ/ℏ = −ωẐ/2−ωX̂/2 (same strength field along both axis). Solve
for the evolution of the state for t > 0 and show it on the Bloch sphere. At what time |0⟩
turns into |+⟩?

Exercise 22: In the previous exercise, repeat the calculation but start from state
|+⟩ at t = 0. At what time |+⟩ turns into |0⟩?

Note, the result of the previous two exercises can be used to create the Hadamard oper-
ation (gate), which turns |0⟩ → |+⟩ and |1⟩ → |−⟩ and back upon the second application
of the gate.

Quite often the physical capabilities do not allow us to create equal amplitude fields
Ẑ and X̂ on demand. So we have to get by with limited control options. For example,
consider a situation where field Ẑ is always on (can’t do anything about it) but we can
turn on and off a small field X̂, that is ωX = g ≪ ωZ . In this case we can try the following
protocol for performing rotations of the qubit state all along the Bloch sphere. Suppose
we make ωX = g for some time τ1 and then we turn it off abruptly for some time τ2, and
repeat the sequence periodically.

Exercise 23: Consider the evolution of the qubit starting from state |0⟩ during the
time τ1 when ωX = g. Show that the evolution is a rotation of the qubit state vector in
the Bloch sphere, around the axis defined by components (g, 0, ωZ), and with a constant
angular velocity

√
ω2
Z + g2. What’s the period of such rotation?
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Exercise 24: Now suppose we set τ1 = π/
√
ω2
Z + g2 and τ2 = π/ωZ , and say g = ωZ/10.

Show geometrically the evolution of the qubit states after each time τ1 and τ2 in the se-
quence. This you can actually do by hand but try QuTiP as well. Approximately what
time would it take for the state vector to cross the equatorial plane?

Exercise 25: Time for a true QuTiP experiment. Let us set the sequence such that
during the time τ we get ωX = g and during the next interval τ we get ωX = −g. A
”square wave” signal for ωX . Let’s further assume that g = ωZ/1000 and τ = π/ωZ .
Simulate the evolution of the qubit state. Plot ⟨Z⟩, ⟨X⟩, ⟨Y ⟩ as a function of time.

Exercise 26: At what time in the previous exercise the evolution comes back to state
|1⟩ (for the first time). At what time the state becomes |+⟩? (for the first time).

Exercise 27: If you succeeded with the previous exercises, try varying the time τ
by around 0.1-1%. How does the evolution change? Look at you, you’re becoming a real
quantum engineer!

In real qubits it is usually hard to switch off the Ẑ-field, so no matter what else we do
with it, the qubit state’s evolution involves a rotation around the Ẑ axis. We can ”unwind
this rotation” (often terminology is ”unwind the Z-phase”) by literally rotating ourselves
around the Z-axis at the right angular velocity. Mathematically, the frame change trans-
formation to unwind the Z-rotation is given by the unitary Û = exp(−iωZtẐ/2).

Exercise 28: Apply operator Û = exp(−iωZtẐ/2) to your solution of the previous
exercise and plot the values of ⟨X⟩, ⟨Y ⟩, ⟨Z⟩. Are the plots a bit simpler now?
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F. Implementing quantum gates: evolution under periodic drive

Amore practical method to rotate the qubit state in the Bloch sphere is to apply a periodic
drive - a field along one axis oscillating with a special (resonance) frequency. Here comes
the harmonic oscillator again (but not quite). We will come back to discussing specific
physical implementation of qubits and their drives a bit later in the course. So for now
let us consider a driven qubit with a simplest Hamiltonian

Ĥ/ℏ = −ωẐ/2− g cos(ωdt)X̂ (9)

Let us remind that in the absence of drive (g = 0) the eigenstates are |0⟩ (the eigenvalue
E0) and |1⟩ (the eigenvalue E1), such that E1 − E0 = ℏω. So the two level system has a
frequency associated with it. We already know the meaning of this frequency: any state
that is a superposition of |0⟩ and |1⟩ rotates along the Z-axis at an angular frequency
ω and hence the period 2π/ω. So perhaps something interesting happens if the drive
frequency ωd becomes close to ω. Starting to resemble some more harmonic oscillators?

Formally, the Hamiltonian function is now time-dependent. What do we do in this
case? Well, we can always just duly solve the original Schrodinger equation (1) writ-
ten in the computational basis |0⟩ and |1⟩. We take the most general qubit state |Ψ⟩ =
α0(t)|0⟩+α1(t)|1⟩ with unknown and time-dependent amplitudes, and insert it into Eq. 1.

(α̇0|0⟩+ α̇1|1⟩ = i(ω/2)α0|0⟩ − i(ω/2)α1|1⟩+ ig cos(ωdt)(α0|1⟩+ α1|0⟩).

(α̇0 − i(ω/2)α0 − ig cos(ωdt)α1)|0⟩+ (α̇1 + i(ω/2)α1 − ig cos(ωdt)α0)|1⟩ = 0

Since |0⟩ and |1⟩ are the basis vectors, the above is only possible if the amplitudes in front
of |0⟩ and |1⟩ are both 0. Equating those to zero gives us the following equations for the
state of a periodically driven qubit:

α̇0 = +α0 × (iω/2) + α1 × ig cos(ωdt)
α̇1 = −α1 × (iω/2) + α0 × ig cos(ωdt)

So, how do we solve this? Let’s quickly make sense of the case g = 0, no drive. Then
α0(t) = α0(t = 0) exp(iωt/2), α1(t) = α1(t = 0) exp(−iωt/2) and assuming at t = 0
we had Ψ(t = 0) = cos(θ/2)|0⟩ + sin(θ/2)|1⟩, we get |Ψ(t) = exp(iωt/2)(cos(θ/2)|0⟩ +
sin(θ/2) exp(−iωt)|1⟩), indeed, a rotation of the Bloch vector around the Z-axis at fre-
quency ω, as expected. The global phase factor exp(iωt/2) is irrelevant and can be
dropped.

Exercise 29: Solve the above equations numerically and reconstruct the evolution of
the Bloch state vector. Use initially ωd = ω and g = ω/1000 and try to vary both. Start
from various initial states, such as states |0⟩, |1⟩, |i⟩, | − i⟩, and see if they evolve into
each other. Look, you are a quantum engineer again!

Exercise 30: Apply the drive frame operator Û = exp(−iωdtZ/2) to the obtained
numerical solution and see how it simplifies again. The meaning of this transformation is
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that you are now rotating along the Z-axis with an angular frequency ωd

A more professional way to look at the evolution of a driven qubit is to go into the
drive frame right away using the transformation Û = exp(−iωdtẐ/2). In doing so, we
obtain a new Hamiltonian,

Ĥdrive frame = −(ω − ωd)Ẑ/2− exp(−iωdtẐ/2)X̂ exp(+iωdtẐ/2)× g cos(ωdt)

Exercise 31: By applying that scary beast to |0⟩ and |1⟩, show that

exp(−iωdtẐ/2)X̂ exp(+iωdtẐ/2) =

(
0 exp(−iωdt)

exp(+iωdt) 0

)

Exercise 32: Now show that exp(−iωdtẐ/2)X̂ exp(+iωdtẐ/2)× g cos(ωdt) =

= (g/2)X̂ + (g/2)

(
0 exp(−2iωdt)

exp(+2iωdt) 0

)
So, the time dependent drive term in the original Hamiltonian got replaced by a fa-
miliar static term gX̂/2 and an additional new drive term, which corresponds to driving
the qubit at frequency 2ωd. And remember, in the rotating frame, the qubit now has a
frequency ω−ωd, so there is a huge mismatch between the qubit transition frequency and
the drive frequency. Perhaps this new drive term can be just ignored? Let’s go with this
guess for now. In this case we arrive at the following approximate Hamiltonian in the
rotating frame:

Ĥdrive frame ≈ −(ω − ωd)Ẑ/2− gX̂/2.

This Hamiltonian is familiar from section E. In particular, let’s consider the case ω−ωd =
0, that is the resonant drive.

Exercise 33: At ω = ωd (resonant drive) the evolution of the qubit state in the drive
frame is a rotation around X̂. What is the period of such rotation?

Exercise 34: Recover the rotation of the Bloch sphere vector in the lab frame by
applying the U−1 operator to the drive frame solution. Show the resulting trajectory on
the Bloch sphere.
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Exercise 35: Show the qubit state vector evolution along the Bloch sphere (in the
drive frame), in case ω − ωd = g, ω − ωg = 10g, and ω − ωg = 100g. Do you see why
highly off-resonant drive of the qubit does not matter?

Exercise 36: Make a density plot of ⟨Z⟩(t) as a function of ω − ωd, for g = 1, ω − ωd

between −3 and 3, and choose range for t such that several oscillations are seen. This is
often called the ”Chevron plot”.

Exercise 37: Do the same plot as above but this time as a function of g for ω = ωd.
Also plot the frequency of oscillations as a function of g?
We have seen that applying an oscillating field along X̂ at a frequency ωd = ωZ = ω
implements a rotation of the Bloch vector around X-axis at the angular velocity g (in
the drive frame). This rotation is called Rabi oscillations. One can repeat the reasoning
in case the oscillating field is applied along the Y-axis, in which case the resulting qubit
state rotation is also around the Y axis.

It is interesting to point out that a resonantly driven qubit behaves quite differently from
a resonantly driven harmonic oscillator. The latter gains energy and increases the ampli-
tude of oscillations indefinitely. The former only has two energy levels, and hence only
one quantum of energy ℏω to gain. So instead of ”swinging” stronger, the qubit state
rotates faster (see previous exercise result). The frequency of this rotation is called Rabi
frequency.

Congratulations. Having worked out these exercises you now know everything there is to
know about a single qubit! You know how to deal with it, you know what can happen to
it, and most importantly, you know how to create arbitrary rotations of the qubit state,
which in quantum computing are called quantum gates.
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